Scaling Analysis for the Tracer Flow Problem in Self-Similar Permeability Fields

نویسندگان

  • M. R. Borges
  • F. Furtado
  • F. Pereira
  • H. P. Amaral Souto
چکیده

The spatial variations in porous media (aquifers and petroleum reservoirs) occur at all length scales (from the pore to the reservoir scale) and are incorporated into the governing equations for multiphase flow problems on the basis of random fields (geostatistical models). As a consequence, the velocity field is a random function of space. The randomness of the velocity field gives rise to a mixing region between fluids, which can be characterized by a mixing length = (t). Here we focus on the scale-up problem for tracer flows. Under very general conditions, in the limit of small heterogeneity strengths it has been derived by perturbation theories that the scaling behavior of the mixing region is related to the scaling properties of the self-similar (or fractal) geological heterogeneity through the scaling law (t) ∼ tγ , where γ = max{1/2, 1− β/2}; β is the scaling exponent that controls the relative importance of short vs. large scales in the geology. The goals of this work are the following: (i) The derivation of a new, mathematically rigorous scaling analysis for the tracer flow problem subject to self-similar heterogeneities. This theoretical development relates the large strength to the small strength heterogeneity regime by a simple scaling of solutions. It follows from this analysis that the scaling law derived by perturbation theory is valid for any strength of the underlying geology, thereby extending the current available results. To the best of the knowledge of the authors this is the only rigorous result available in the literature for the large strength heterogeneity regime. (ii) The presentation of a Monte Carlo study of highly resolved simulations, which are in excellent agreement with the predictions of our new theory. This indicates that our Monte Carlo results are accurate and can be applied to other models for stochastic geology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Analysis of Seepage through Natural Alluvial Deposits Considering Mechanical Anisotropy

The soil is a heterogeneous and anisotropic medium. Hydraulic conductivity, an intrinsic property of natural alluvial deposits varies both deterministically and randomly in space and has different values in various directions. In the present study, the permeability of natural deposits and its influence on the seepage flow through a natural alluvial deposit is studied. The 2D Finite Difference c...

متن کامل

On asymptotics of a tracer advected in a locally self-similar, correlated flow

In this paper we consider the motion of a tracer in a flow that is locally self-similar and whose correlations decay at infinity but at the rate that does not guarantee that the flow does not have ”memory effect”. We show that when the field is Gaussian the appropriately regularized scaling limit of the trajectory is a super-diffusive fractional Brownian motion. This complements our previous re...

متن کامل

Experimental Investigation of the Permeability and Inertial Effect on Fluid Flow through Homogeneous Porous Media

The value of the permeability in fluid flow through porous media is important for process investigation. In low Reynolds number, the classic Darcy’s law is suitable for simulation of fluid flow. In this paper, an experimental study for evaluation of preformed fiber permeability has been done. Also, the deviations from the classical Darcy law by experimental and numerical simulation of the N...

متن کامل

Self-similar solutions‎ ‎of the Riemann problem for two-dimensional systems of conservation‎ ‎laws

In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem

متن کامل

Numerical Scrutinization of Three Dimensional Casson-Carreau Nano Fluid Flow

This study presents the computational analysis of three dimensional Casson and Carreau nanofluid flow concerning the convective conditions. To do so, the flow equations are modified to nonlinear system of ODEs after using appropriate self-similarity functions. The solution for the modified system is evaluated by numerical techniques. The results show the impacts of involving variables on flow c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Multiscale Modeling & Simulation

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2008